The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues
نویسنده
چکیده
We relate the tree-decompositions of hypergraphs introduced by Robertson and Seymour to the finite and infinité algebraic expressions introduced by Bauderon and Courcelle. We express minor inclusion in monadic second-order logic, and we obtain grammatical characterizations of certain sets of graphs defined by excluded minors. We show how tree-decompositions can be used to construct quadratic algorithms deciding monadic second-order properties on hypergraphs ofbounded tree-width. Résumé. — On étudie les liens entre les décompositions arborescentes d'hypergraphes introduites par Robertson et Seymour et les expressions algébriques d'hypergraphes finies ou infinies de Bauderon et Courcelle. On exprime l'inclusion au sens des mineurs en logique monadique du second ordre, et on obtient des caractérisations grammaticales de certains ensembles de graphes définis par mineurs exclus. On utilise les décompositions arborescentes pour construire des algorithmes quadratiques qui décident les propriétés des hypergraphes de largeur arborescente bornée exprimables en logique monadique du second ordre.
منابع مشابه
The monadic second-order logic of graphs III : tree-decompositions, minors and complexity issues
We relate the tree-decompositions of hypergraphs introduced by Robertson and Seymour to the finite and infinité algebraic expressions introduced by Bauderon and Courcelle. We express minor inclusion in monadic second-order logic, and we obtain grammatical characterizations of certain sets of graphs defined by excluded minors. We show how tree-decompositions can be used to construct quadratic al...
متن کاملGraph equivalences and decompositions definable in Monadic Second-Order Logic. The case of Circle Graphs
Many graph properties and graph transformations can be formalized inMonadic Second-Order logic. This language is the extension of First-Order logic allowing variables denoting sets of elements. In the case of graphs, these elements can be vertices, and in some cases edges. Monadic second-order graph properties can be checked in linear time on the class of graphs of tree-width at most k for any ...
متن کاملA Simple Algorithm for the Graph Minor Decomposition - Logic meets Structural Graph Theory
A key result of Robertson and Seymour’s graph minor theory is a structure theorem stating that all graphs excluding some fixed graph as a minor have a tree decomposition into pieces that are almost embeddable in a fixed surface. Most algorithmic applications of graph minor theory rely on an algorithmic version of this result. However, the known algorithms for computing such graph minor decompos...
متن کاملPractical algorithms for MSO model-checking on tree-decomposable graphs
In this survey, we review practical algorithms for graph-theoretic problems that are expressible in monadic second-order logic. Monadic second-order (MSO) logic allows quantifications over unary relations (sets) and can be used to express a host of useful graph properties such as connectivity, c-colorability (for a fixed c), Hamiltonicity and minor inclusion. A celebrated theorem in this area b...
متن کاملThe Monadic Second-Order Logic of Graphs XI: Hierarchical Decompositions of Connected Graphs
We prove that the unique decomposition of connected graphs defined by Tutte is definable by formulas of Monadic Second-Order Logic. This decomposition has two levels: every connected graph is a tree of "2-connected components" called blocks ; every 2-connected graph is a tree of so-called 3-blocks. Our proof uses 2dags which are certain acyclic orientations of the considered graphs. We obtain a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ITA
دوره 26 شماره
صفحات -
تاریخ انتشار 1992